AI

Improve RAG accuracy with fine-tuned embedding models on Amazon SageMaker

Retrieval Augmented Generation (RAG) is a popular paradigm that provides additional knowledge to large language models (LLMs) from an external source of data that wasn’t present in their training corpus. RAG provides additional knowledge to the LLM through its input prompt space and its architecture typically consists of the following components: Indexing: Prepare a corpus […]

Improve RAG accuracy with fine-tuned embedding models on Amazon SageMaker Read More »

How BRIA AI used distributed training in Amazon SageMaker to train latent diffusion foundation models for commercial use

This post is co-written with Bar Fingerman from BRIA AI. This post explains how BRIA AI trained BRIA AI 2.0, a high-resolution (1024×1024) text-to-image diffusion model, on a dataset comprising petabytes of licensed images quickly and economically. Amazon SageMaker training jobs and Amazon SageMaker distributed training libraries took on the undifferentiated heavy lifting associated with infrastructure

How BRIA AI used distributed training in Amazon SageMaker to train latent diffusion foundation models for commercial use Read More »

Create custom images for geospatial analysis with Amazon SageMaker Distribution in Amazon SageMaker Studio

Amazon SageMaker Studio provides a comprehensive suite of fully managed integrated development environments (IDEs) for machine learning (ML), including JupyterLab, Code Editor (based on Code-OSS), and RStudio. It supports all stages of ML development—from data preparation to deployment, and allows you to launch a preconfigured JupyterLab IDE for efficient coding within seconds. Additionally, its flexible

Create custom images for geospatial analysis with Amazon SageMaker Distribution in Amazon SageMaker Studio Read More »